

A. Le Padellec Irradiation de biomolécules:

Aspect expérimental 2ème partie

Interactions électrons – biomolécules

Préambule: radiation ionisante \Rightarrow génération d'électrons secondaires \Rightarrow problème du transport d'électrons dans la matière biologique

A/ Processus de diffusion d'électrons

A1/ section efficace absolue et totale (TCS)

Mesures de sections efficaces totales pour des collisions d'électrons sur l'alcool α -tétrahydrofurfurylique (C5H10O2: THFA) P Mozejko et al Chemical Physics Letters 429 (2006) 378

Note: la tétrahydrofuran est une molécule proche de l'ADN desoxyribose

Electron energy [eV]

A2/ angles de diffusion, sections efficaces différentielles DCS, transport des électrons ..

Diffusion élastique d'électrons sur la molécule de tétrahydrofurane THF Milosavljevic, et al, Eur. Phys. J. D 35 (2005) 411

Dépendance angulaire des DCS absolues pour la diffusion élastique d'électrons sur la molécule THF pour différentes énergies incidentes (□) résultats obtenus à Liège, (•) résultats obtenus à Belgrade \Rightarrow Technique en faisceaux croisés \Rightarrow Energies incidentes entre 20 et 300 eV, et angles de diffusion de 10 à 110°

 \Rightarrow Calibration des DCS via une mesure intermédiaire sur l'azote

 $\Rightarrow Influence de l'excitation$ inélastique sur la forme des DCSélastiques discutée. ... d'autres cibles pour des calculs selon un modèle à atomes indépendants...

Sections efficaces pour la diffusion d'électrons sur des composants sélectionnés de l'ADN et l'ARN Mozeiko and Sanche Rad.Phys.Chem 73 (2005) 77

 \Rightarrow Sections efficaces différentielles et intégrales

 $\Rightarrow Collisions élastique entre$ électrons et analogues de moléculesdu squelette des ADN et ARN :tétrahydrofuranne, alcool 3-hydroxytétrahydrofurane,tétrahydrofurfurylique- et acide phosphorique dans lagamme d'énergie 50 - 2000 eV $<math display="block">\Rightarrow Modèle à atomes indépendants$ avec potentiel statique pour la polarisation + formalisme deBethe

 \Rightarrow Autres calculs: sections efficaces d'ionisation par impact électronique du seuil à 4000 eV.

B/ Processus d'excitation et de fragmentation

L'action des électrons sur des neutres dépend de leur énergie incidente...

Etude préliminaire des molécules chargées par spectrométrie de masse

B1/ excitation électronique et vibrationnelle

Spectrométrie par perte d'énergie de l'électron 'Electron Energy Loss Spectrometry'

Einc >> Eexc: pas d'échange d'électron: transition dipolaire permise ie états singulets ≡ absorption VUV Einc ≈ Eexc: possibilité d'échange d'électron: possibilité de peupler des états triplets Excitation électronique et vibrationnelle par impact électronique dans la thymine et 5-bromouracil en phase gazeuse Abouaf et al, Chem.Phys.Lett 381(2003) 486

Excitation électronique de la thymine. Spectres EEL enregistrés à l'angle de diffusion $\theta = 5^{\circ}$. Gamme d'énergie étudiée 0-100 eV

⇒ La technique permet de localiser précisément les états électroniques singulets de plus basse énergie. Ils sont décalés vers le bleu d'environ 0,3 eV par rapport aux résultats d'absorption UV-Visible (voir plus loin).

 \Rightarrow Etats triplets pas observés dans les collisions électroniques de haute énergie en couches minces ou en absorption UV-Visible.

...vibrationnelle ...

Deux régions avec résonances pour l'excitation vibrationnelle: 1 - 2 et 4 - 5 eV.

 \Rightarrow Autour de 1 - 2 eV: excitation des modes d'étirement de C=C, de C-O du carbonyle et de NH.

 \Rightarrow A 5 eV, les modes d'étirement NH dominent

Excitation vibrationnelle de la thymine dans la deuxième région de résonance (4 - 5 eV). Spectres de perte d'énergie enregistrées à l'énergie incidente Ei =1,7 eV à des angles de diffusion de 90° (a), 60° (b) et 30° (c). Trois régions de vibration sont observées autour de 0,1, 0,2 et 0,4 eV.

Absorption optique VUV et spectrométrie par perte d'énergie de l'électron du formamide Gingell et al Chem. Phys. 220 (1997) 191

•V₁: structure vibrationnelle due à la transition ${}^{1}\pi$ - π *.

• Q (~ 9,2 eV): résulte de la superposition de transitions vers plusieurs états de Rydberg !?

• Trois nouvelles structures marquées U₁ (~11,7 eV), U₂ (~ 12,4 eV) et U₃ (~ 13,4 eV) dues à ${}^{1}\pi_{1}\pi_{3}^{*}$ et à des états de Rydberg liés aux potentiels d'ionisation IP3 (14,18 eV) et IP4 (14,75 eV).

Spectre EEL du formamide, haute résolution, grande énergie incidente et faible angle de diffusion. Des nouveaux États: U1, U2 et U3.

B2/ basse énergie: attachement électronique dissociatif 'Dissociative Electron Attachment'

Formation résonante de ruptures de brins d'ADN par des électrons de basse énergie (3 à 20 eV) Boudaiffa et al, Science 287 (2000)1653

Louvain-La-Neuve 22 juin 2010

Attachement électronique sur l'uracile: destruction effective à des énergies subexcitation G. Hanel et al Phys.Rev.Lett 90 (2003) 188104

Rendement d'ions produit pour (U-H)⁻ dans le processus d'attachement électronique sur l'uracile en phase gazeuse en fonction de l'énergie incidente. Résolution en énergie 80 meV

Sections efficaces partielles et absolues d'attachement électronique sur l'uracile en phase gazeuse en fonction de l'énergie incidente. Résolution en énergie: 100 – 120 meV

Caractérisation des résonances par calculs de collisions électroniques: Gianturco et al J. Chem. Phys. 128 (2008) 174302

B3/ haute énergie: dissociation induite par impact d'électrons 'Electron Induced Dissociation'

Etude des seuils d'ionisation de l'uracile par impact d'électrons Deniflet al Int.J Mass Spect 238 (2004) 47

Interactions photons – biomolécules

A1/ Sources de rayonnement synchrotron: photodissociation

Spectrométrie de masse des photoions de l'adénine, thymine et uracile dans la gamme d'énergie des photons VUV 6 - 22 eV Jochims et al, Chemical Physics 314 (2005) 263

 \Rightarrow énergies d'ionisation et d'apparition des ions (AE)

 \Rightarrow AE: chaleurs de formation + clarification des voies de photoionisation dissociative.

 \Rightarrow thymine: perte dominante de HNCO

 \Rightarrow importance astrophysique de HCNH⁺, formé par plusieurs voies de fragmentation.

Certaines courbes de rendement d'ions de la thymine

Photofragmentation de la guanine, cytosine, leucine et méthionine Plekan et al, Chemical Physics 334 (2007) 53

Spectre de masse de la cytosine en fonction de l'énergie du photon ⇒ spectres de photoémission en bande de valence ⇒ les photons de basse énergie conduisent à une ionisation douce et à une fragmentation réduite. ⇒ la photoionisation au dessous de 16,67 eV conduit principalement à l'ion parent.

Même type d'expériences qu'avec des électrons, mais meilleur résolution !

B1/ Spectroscopie de photoélectrons

Une étude de la structure électronique des couches de valence de l'uracile et methyluracile, Holland et al Chemical Physics 353 (2008) 47

 \Rightarrow distributions angulaires des photoélectrons permettent de distinguer entre les orbitales de type σ et π

- \Rightarrow énergies d'ionisation verticale
- \Rightarrow théorie: assignation de la plupart des bandes de photoélectrons
- \Rightarrow accès à la structure électronique

Cadre supérieur: spectre de photoélectrons en couche de valence de l'uracile avec des photons de 80 eV pour $\theta = 0$. Le spectre en barres représente les résultats obtenus par l'approche OVGF. Cadre inférieur: Le spectre théorique des photoélectrons de l'uracile obtenus en utilisant la méthode ADC(3).

C1/ Spectroscopie en couche interne

Applications de la spectroscopie d'ionisation pour l'étude des petites biomolécules Wang Journal of Physics: Conference Series 141 (2008) 012019

Couches internes : sensibles à la conformation !

Spectre simulé de l'ionisation de l'électron 1s du carbone pour les guanine, purine et adénine

Comparaison entre spectre simulé et spectre expérimental pour l'adénine

Spectroscopie d'ionisation: lien étroit entre structure, orbitales moléculaires et mécanismes de liaison chimique. Méthode pas applicable aux grosses biomolécules (capacité de calcul limitée). Louvain-La-Neuve 22 juin 2010 21

Photodommage sur mononucléotides isolés, spectres de photodissociation et canaux de fragmentation Marcum J.et al *Phys. Chem. Chem. Phys.* 11 (2009) 1740

 \Rightarrow mêmes fragments anioniques que dans les expériences de dissociation induite par collision (CID)

 \Rightarrow canaux de fragmentation conduisent à une perte de l'information génétique par le clivage de la liaison glycosidique CN et à la rupture de brin par l'affaiblissement de la liaison phosphate-sucre.

CONCLUSION

 \Rightarrow Les manips ont accès à un large panel de phénomènes souvent complexes

 \Rightarrow L'interprétation des résultats est parfois difficile

 \Rightarrow Manque claire de données théoriques